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Strong similarities between the properties of nonlinear diatomic lattices, recently explored by

Kivshar and Flytzanis [Phys.
structures are elucidated.

Rev.

A 46, 7972 (1992)], and those of periodic nonlinear optical
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In a recent article Kivshar and Flytzanis analyze the
properties of nonlinear diatomic lattices [1]. They show
that such lattices support solitonlike solutions, which are
somewhat similar to the gap-soliton solutions which have
been investigated in periodic nonlinear optical structures.
Here I would like to point out that, in fact, the similar-
ity between the nonlinear diatomic lattices and periodic
nonlinear optical structures is actually very strong, sat-
isfying very similar equations. Specifically, the authors
consider a nonlinear lattice with period a, in which the
displacement u,(t) of atom n satisfies the equation of
motion
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where m,, is the mass of atom n, K is the coupling con-
stant, and a and (@ are linear and nonlinear parame-
ters, respectively. Taking m, = m for n even, while
my, = M (M > m) for n odd, leads, in the linear limit, to
the well known dispersion relation for a diatomic lattice
exhibiting a low-frequency acoustic branch, and higher-
frequency optical branch [2]. The authors now concen-
trate on the properties of such a system at the edge of
the Brillouin zone where the wave number ¢ = 7/2a,
and where, in the linear limit, the two branches have the
associated frequencies wy 2, where
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The particles’ motion is such that at w; (wz) the light
(heavy) particles are at rest, while the heavy (light) par-
ticles oscillate with opposite phase [1,2].

To study the properties of the nonlinear lattice the au-
thors make the common assumption that the particles’
motion is only slightly modified by the nonlinearity. This
modification is expressed by two envelope functions, one
for the sublattice consisting of the light particles, and one
for that consisting of the heavy particles, v, (t) and wn(t),
respectively. For small nonlinearities these envelopes are
slowly varying and can be considered to be continuous
functions of position, and thus v,(t) = v(z,t), and simi-
larly for w. The authors then show that these envelope
functions satisfy [1]
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The authors then proceed to find various solitonlike so-
lutions to these equations.

Although Kivshar and Flytzanis point out the simi-
larity between their work and the investigation of peri-
odic nonlinear optical media, this is not all clear from
Egs. (3). Here I would like to stress that this relation is
very strong, and that Egs. (3) can be transformed such
that the similarity is evident. To do so it is easiest, al-
though not essential, to consider the limit in which the
mass difference M — m is small, so that M ~ m = pu,
and wi R wy X @ = 5(w1 + ws). We therefore may set
Aw? = (wg + (U]_)(u)g — wy) = 2@6, where ¢ is the width
of the forbidden zone, so that we find
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I now introduce the following definitions:
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It is easy to demonstrate that V equals the group velocity
at the Brillouin zone edge in the limit we are considering.
Defining further the new functions fi through
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it is straightforward to show that these new functions
satisfy the set of coupled equations
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Now these equations are very similar to the coupled
mode equations which describe the properties of periodic
nonlinear optical media in the limit in which the peri-
odicity is weak [3,4]. There the fi represent the slowly
varying envelopes of the amplitudes of the forward and
backward propagating modes. In fact the only differ-
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ence between Egs. (7) and those for periodic nonlinear
optical media is the presence of the last term in each of
Egs. (7); such “phase conjugation” terms are well known
in nonlinear optics. By a phase matching argument ap-
plied to the fi these phase conjugation terms can be
shown to be unimportant in the optical context. In non-
linear lattices such terms evidently survive—this is so
because here phase matching arguments are applied to
the envelope function v and w [1], not to the f+. As a
consequence, different terms “survive,” thus ultimately
resulting in slightly different equations of motion. In
the basis of the new envelope functions fi, the mode
coupling arises from gratinglike terms, which are propor-
tional to k, as well as from nonlinear cross-phase modula-
tion and phase-conjugation terms. The relation between
the properties of nonlinear diatomic lattices and those of
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periodic nonlinear optical structures can be further elu-
cidated if one realizes that the envelope functions v(zx,t)
and w(z,t) in fact modulate the Bloch functions of the
linear periodic lattice.

By a simple transformation I have thus explicitly
shown that there is a very close relation between the
properties of periodic nonlinear optical media and those
of nonlinear diatomic lattices. I intend to explore these
similarities in more depth in future publications.
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